Ir al contenido principal

Unidad III: Algebra lineal numérica.

Unidad III: Álgebra lineal numérica.
El Álgebra lineal numérica es el estudio de algoritmos para realizar cálculos de álgebra lineal, en particular las operaciones con matrices, en las computadoras. A menudo es una parte fundamental de la ingeniería y los problemas de ciencias de la computacióntratamiento de señales, simulaciones en ciencias de materiales, la biología estructural, la minería de datos, y la bioinformática, la dinámica de fluidos, y muchas otras áreas. Este tipo de software depende en gran medida el desarrollo, análisis y aplicación de estado de los algoritmos de última generación para la solución de diversos problemas de álgebra lineal numérica, en gran parte por el papel de las matrices en diferencias finitas y métodos de elementos finitos.
Los problemas comunes en álgebra lineal numérica incluyen el cálculo de la siguiente: la factorización LUFactorización QRvalores propios.
En el álgebra lineal, la factorización o descomposición LU (del inglés Lower-Upper) es una forma de factorización de una matriz como el producto de una matriz triangular inferiory una superior. Debido a la inestabilidad de este método, deben tenerse en cuenta algunos casos especiales, por ejemplo, si uno o varios elementos de la diagonal principal de la matriz a factorizar es cero, es necesario premultiplicar la matriz por una o varias matrices elementales de permutación. Método llamado factorización  o  con pivote. Esta descomposición se usa en el análisis numérico para resolver sistemas de ecuaciones (más eficientemente) o encontrar las matrices inversas.
En álgebra lineal, la descomposición o factorización QR de una matriz es una descomposición de la misma como producto de una matriz ortogonal por una triangular superior. La descomposición QR es la base del algoritmo QR utilizado para el cálculo de los vectores y valores propios de una matriz.
En álgebra lineal, los vectores propios o autovectores de un operador lineal son los vectores no nulos que, cuando son transformados por el operador, dan lugar a un múltiplo escalar de sí mismos, con lo que no cambian su dirección. Este escalar recibe el nombre valor propio, autovalor o valor característico. A menudo, una transformación queda completamente determinada por sus vectores propios y valores propios. Un espacio propio, autoespacio o subespacio fundamental asociado al valor propio  es el conjunto de vectores propios con un valor propio común.
La palabra alemana eigen (/'aj γen /),1​ que se traduce en español como propio, se usó por primera vez en este contexto por David Hilbert en 1904 (aunque Helmholtz la usó previamente con un significado parecido). Eigen se ha traducido también como inherente, característico o el prefijo auto-, donde se aprecia el énfasis en la importancia de los valores propios para definir la naturaleza única de una determinada transformación lineal. Las denominaciones vector y valor característicos también se utilizan habitualmente. El uso del prefijo auto- es un caso propio y singular que se da solamente en español, portugués e italiano. En otras lenguas con más tradición en Matemáticas (alemán, holandés, inglés, francés, ruso, etc.) nadie parece haber traducido eigen-(propio, perteneciente a, etc.) por auto- (que nada tiene que ver con la etimología o el significado del prefijo eigen)

La regla de Cramer
 es un teorema del álgebra lineal que da la solución de un sistema lineal de ecuaciones en términos de determinantes. Recibe este nombre en honor a Gabriel Cramer (1704-1752), quien publicó la regla en su Introduction à l'analyse des lignes courbes algébriques de 1750, aunque Colin Maclaurin también publicó el método en su Treatise of Geometry de 1748 (y probablemente sabía del método desde 1729).1

La regla de Cramer es de importancia teórica porque da una expresión explícita para la solución del sistema. Sin embargo, para sistemas de ecuaciones lineales de más de tres ecuaciones su aplicación para la resolución del mismo resulta excesivamente costosa: computacionalmente, es ineficiente para grandes matrices y por ello no es usado en aplicaciones prácticas que pueden implicar muchas ecuaciones. Sin embargo, como no es necesario pivotar matrices, es más eficiente que la eliminación gaussiana para matrices pequeñas, particularmente cuando son usadas operaciones SIMD.

Comentarios